Numerical Solution of Partial Differential Equations

Applied and Comp Math 922

Section: G100

Term: 2011 Fall

Instructor:
Dr. Adam Oberman

Discussion Topics: Numerical solution of partial differential equations

- Finite Difference methods for time dependent PDEs
- Finite Difference methods for elliptic PDEs
- Finite Element Methods

Applications of nonlinear elliptic PDEs, numerical methods Selected topics from:

- Level set method and Front propagation
- Hamilton-Jacobi Equations (optimal control theory, path planning, wave propagation)
- Mathematical Finance (option pricing, portfolio optimization)
- Geometric PDEs (curvature flows, surface deformations, Greens coordinates, Monge-Ampere equation)
- Mathematical Image processing

Grading: 20% Homework and Quizzes 30% Midterm Exam 50% Final Exam

Required Texts:

Recommended Texts:

recommended:

Numerical Methods for Evolutionary Differential Equations Uri M. Ascher

(will be used for part of the course)

Remainder of course: notes will be provided by instructor

Materials/Supplies:

Prerequisite/Corequisite: recommended:

MACM 316 or MACM 416 or equivalent introductory numerical analysis course

MATH 418 or equivalent introductory PDE course

Notes: THE INSTRUCTOR RESERVES

THE

RIGHT TO CHANGE ANY OF THE ABOVE INFORMATION.

Students should be aware that they have certain rights to confidentiality concerning the return of course papers and the posting

of marks. Please pay careful attention to the options discussed in class at the beginning of the semester.

Numerical Solution of Partial Differential Equations

This outline is derived from a course outline repository database that was maintained by SFU Student Services and the University's IT Services Department. The database was retired in 2014 and the data migrated to SFU Archives in 2015.